Трехстворчатые протезы клапана сердца

Биологические искусственные клапаны сердца

Многолетний (с конца 1950-х годов) мировой опыт применения механических протезов клапанов сердца сформировал следующие требования к
ним[2]:

  • Механическая надёжность протеза должна обеспечивать долговечность его работы в течение жизни пациента.
  • Гемодинамические свойства протеза должны быть близки к естественным и сохраняться во времени (поток должен быть ламинарным, запирающий элемент должен обладать минимальной инерционностью, регургитация на протезе не должна быть выше, чем у естественных клапанов).
  • Протез должен быть биоинертным, не травмировать форменные элементы крови, обладать минимальным объёмом и массой.
  • Протез должен быть удобен для хирурга при имплантации в любых анатомических условиях.
  • Тромборезистентность должна исключать опасность развития тромбоза и тромбоэмболии без использования антикоагулянтной терапии.
  • Размеры и форма протеза не должны ухудшать механику сердечных сокращений.
  • Должен отсутствовать шумовой дискомфорт от работы протеза.
  • Должны быть гарантированы простота хранения и стерильность протеза.

Лепестковый клапан

Лепестковый клапан своей конструкцией в наибольшей степени имитируют строение естественных клапанов сердца, но используются значительно реже протезов других типов. Во первых, устаревшие конструкции лепестковых клапанов не используются из-за значительно большей вероятности осложнений (до полного разрушения клапана).

Известны три группы осесимметричных искусственных механических протезов клапанов сердца вентильного типа: клапаны с поступательным движением запирающего элемента (шаровые, полушаровые, чечевицеобразные и др.), поворотно-дисковые и двустворчатые.

Все эти протезы имеют одинаковый принцип работы и состав структурных элементов: запирающий элемент, ограничитель движения этого элемента, а также пришивную манжету для фиксации протеза. Запирающий элемент двигается пассивно в зависимости от изменения давления в сердечных камерах в течение сердечного цикла.

Биологические искусственные клапаны сердца — протез, который частично состоит из неживых, специально обработанных тканей человека или животного.

В терминологии, относящейся к биопротезированию, встречаются понятия, имеющие латинское происхождение: heterogenic — разнородный, homogeneous — однородный, xenogenic — относящийся к другому биологическому виду, allogenic — относящийся к другой особи того же биологического вида, autogeneous — выделен от самой особи, graft — трансплантат.

Трехстворчатые протезы клапана сердца

Соответственно, при пересадке между разными видами, например, от животного к человеку (как правило, свиные или бычьи участки), используют термин «ксенографт», при пересадке у одного и того же человека из одной позиции в другую — термин «аутографт», при пересадке от человека к человеку — «гомографт».

Разработка и применение биологических заменителей клапанов сердца (биокпапанов) начались в середине 1950-х годов, но основное развитие получили два десятилетия спустя. Их использование в клинической практике связано с недостатками их механических конкурентов: тромбоэмболическими осложнениями, необходимостью пожизненного приёма антикоагулянтов, протезным эндокардитом и острыми дисфункциями.

Напротив, биологические заменители формируют структуру кровотока, близкую к физиологической, обладают низкой тромбогенностью, в большинстве случаев позволяют избежать приёма антикоагулянтной терапии, а постепенное развитие их дисфункций даёт возможность выполнить повторную операцию в плановом порядке.

Развитие биопротезов для сердечно-сосудистой системы проходит, преимущественно, по двум направлениям: первое — развитие конструкции каркасных биопротезов, второе — совершенствование технологий структурной стабилизации биоткани.

Основная статья: Структурная стабилизация биоткани

Стабильность коллагеновой структуры биологических протезов во времени (основа их длительной работы) достигается сохранением естественной архитектоники биологической ткани при её химической обработке и консервации. Одновременно решаются задачи повышения устойчивости коллагена к ферментативному и механическому разрушению, предотвращению клеточных и иммунных воздействий со стороны организма реципиента, уменьшения зон концентрации напряжения при фиксации биологической части протеза на каркасе[3].

Двустворчатый протез клапана сердца.

Стабилизация биоткани ведётся путём её химической обработки веществами, образующими интрамолекулярные и межмолекулярные поперечные связи с аминокислотами молекул коллагена[4][5]. Химические агенты предотвращаются также кальцификацию и сохраняют эластические свойства биоткани, а различными методами стерилизации и консервации обеспечивается сохранение морфологической целостности и функциональной полноценности биоматериала, достигнутых при его стабилизации[4].

Каркасный биологический клапан сердца

Каркасный биологический клапан сердца

Каркасные биологические клапаны сердца — протез, в котором неживые, специально биологические обработанные ткани зафиксированы на опорном каркасе (стенте), покрытом синтетической тканью.

Впервые предложены в 1967 году[6], и в дальнейшем, помимо улучшения способов стабилизации биоткани, совершенствовались по конструкции и свойствам опорных каркасов для фиксации их биологической части.

Изначально использовался жёсткий опорный каркас, который приводил к отрыву протеза по линии крепления комиссур к его стойкам, а в ряде наблюдений — к разрывам самих створок. Было установлено, что нагрузки на створки биопротеза при фиксации в каркасе способствуют развитию усталостных повреждений коллагеновых волокон в центре створок и в местах фиксации комиссур — то есть механические и биологические повреждающие факторы суммируются[4].

Для уменьшения нагрузки на створки биоклапана в настоящее время широко применяются гибкие каркасы, сохраняющие жёсткое кольцо в основании. Напряжение в их створках по сравнению с жёстким каркасом уменьшалось в экспериментах in vitro на 90 %. Известны гибкие каркасы из стали различных марок, титановых сплавов, а также комбинированные — содержащие металлические и полимерные элементы конструкции[4][7].

Основная статья: Бескаркасные биоклапаны сердца

Клапанный гомографт

Сосудистый клапанный гомографт («гомографт» от лат. homo — человек, либо лат. homogeneus – однородный, и лат. graft — трансплантат, протез) — имплантируемый протез, который полностью или частично состоит из неживых, специально обработанных тканей человека, включающих сердечные клапаны.

Основная статья: Биоклапаны тканевой инженерии

Зарубежные разработки

Первые разработки

В 1958 году, ещё в период начала разработки шаровых протезов, J. W. Holter впервые сформулировал концепцию двустворчатых протезов искусственных клапанов сердца[1].

В 1965 годуВ. R. Kalke, получивший образование в Индии и работавший в Университете Миннеаполиса, предложил К. У. Лиллехею конструкцию полностью титанового двустворчатого клапана с шарнирным механизмом крепления створок и М-образным ограничителем их движения[2][3]. В первой модели оси поворота располагались ближе к периферии гидравлического отверстия, центральное проходное отверстие по площади превосходило боковые, створки в открытом положении были обращены к набегающему потоку своими криволинейными кромками.

Однако добиться эффективной работы такой конструкции не удалось. В окончательном варианте оси клапана сердца Lillehei—Kalke были приближены к центру, тем самым центральное проходное отверстие было уменьшено относительно боковых, а створки при открытии были обращены к набегающему потоку своими прямолинейными кромками. Такое расположение осей оказалось настолько эффективным, что используется во всех известных двустворчатых конструкциях до сегодняшнего времени.

В 1968 году компания Surgitool изготовила единственный клапан Lillehei—Kalke, который К. У. Лиллехей имплантировал пациенту, умершему через двое суток, и идею протезов этого типа оставили в пользу других проектов, над которыми работала группа К. У. Лиллехея.

В 1976 году инженер X. С. Posis предложил хирургу D. Nicoloff проект двустворчатого клапана, похожего на первую модель Lillehei—Kalke. С этим проектом они обратились к М. Villafana — основателю компании, выпускающей кардиостимуляторы. Продолжение работы над проектом клапана привело к появлению модели, схожей со второй модификацией клапана Lillehei—Kalke, однако не имеющей М-образного ограничителя и полностью выполненной из пиролитического углерода, производство которого было освоено под руководством J. С. Bokros[4].

D. Nicoloff впервые имплантировал свой клапан 3 октября1977 года в Миннеаполисе. М. Villafana предложил назвать клапан по имени Святого Иуды, согласно церковному преданию, помогающему больным[5].

Эта конструкция, известная под названием St. Jude Medical, очень быстро заняла лидирующее положение на рынке протезов сердечных клапанов. D. Nicoloff, не желая прерывать клиническую практику, отказался от предложенной должности медицинского директора новой компании — St. Jude Medical. По его просьбе на эту должность назначили К. У. Лиллехая, занимавшего её до своей смерти в 1999 году.

Корпус и створки протеза St. Jude Medical Standard выполнены из графита и покрыты пиролитическим углеродом. Кроме того, клапаны импрегнированы вольфрамом (5—10 % по весу) для обеспечения рентгеноконтрастности. Выемки шарнирного механизма в форме «бабочек» расположены во входных выступах корпуса седла.

Угол открытия створок составляет 85° к плоскости корпуса; угол между открытыми створками (величина центрального гидравлического отверстия) — 10°, в закрытом состоянии створки соединяются под углом 120° по отношению друг к другу. Выходная кромка каждой створки расположена на уровне середины высоты кольца корпуса.

Объём регургитации на этих протезах (7—11 % от ударного объёма в зависимости от диаметра протеза) не представляет клинической опасности. Пришивная манжета сделана из полиэстера. Пришивная манжета изначально была неподвижна относительно корпуса клапана, в последующем появилась возможность её вращения, что позволило хирургам во время операции менять ориентацию клапана.

Протез выпускался для установки в митральную, аортальную и трикуспидальную позиции. Размеры для аортальной позиции по пришивной манжете: 19—25 мм, для митральной — 25—33 мм. За всё время использования было зарегистрировано лишь несколько случаев структурных отказов этих клапанов. Клапан St. Jude Medical производится с 1977 года и претерпел за это время несколько модификаций: по манжете — Masters (1995), Expanded (1996), Hemodinamic Plus (1996), Masters Silzone (1997), по корпусу — Regent (1999)[6][7][8][9].

Главным отличием модели St. Jude Medical Masters является возможность вращения корпуса в пришивной манжете за счёт замены удерживающей обмотки спиральной пружиной и двумя стопорными кольцами.

В модели St. Jude Medical Masters Silzone была применена манжета с покрытием металлическим серебром путём ионно-лучевого испарения и осаждения (SZ-покрытие), в надежде, что слой серебра предотвратит колонизацию бактерий на протезах и последующий протезный эндокардит[10]. Было доказано, что SZ-покрытие снижает адгезию и колонизацию микроорганизмов, — таких, как Staphylococcus aureus, Е.

coli, Klebsiella pneumoniae, Candida albicans, — в культуре клеток в опытах на животных[11]. Однако с применением протеза St. Jude Medical Masters Silzone некоторые хирурги стали связывать высокий риск образования значительной параклапанной фистулы (требующей реоперации или приводящей к смерти пациента), по сравнению с другими манжетами[12].

В модели St. Jude Medical Hemodinamic Plus имеется супрааннулярная пришивная манжета с интрааннулярным углеродным кольцом корпуса, что позволяет избегать расположения пришивной манжеты в фиброзном кольце после имплантации клапана. Эта новация увеличивает диаметр гидравлического отверстия на 2 мм относительно модели Standard без изменения конструкции корпуса, что обеспечивает этой модели гемодинамическое превосходство[14].

Модель St. Jude Medical Regent отличается тем, что шарнирный механизм створок клапана полностью опущен в углеродное кольцо корпуса, которое перемещено в супрааннулярную позицию вместе с пришивной манжетой[16][17]. Кроме того, была уменьшена толщина стенки корпуса, что обеспечило увеличение диаметра гидравлического отверстия на 1 мм относительно модели Hemodinamic Plus.

Искусственные клапаны сердца St. Jude Medical имеют хорошие гемодинамические характеристики, низкую частоту тромбоэмболических осложнений и тромбоза протеза. Эти клапаны фактически стали «золотым стандартом», относительно которого оцениваются другие механические клапаны сердца. В 2000 году был имплантирован миллионный образец этого протеза.

монолитный корпус из пиролитического углерода не имеет крепёжных выступов, выходная кромка створки расположена близко к выходному краю кольца корпуса для придания дополнительной жёсткости и предотвращения выскакивания створок. Вокруг корпуса клапана размещается упрочняющее кольцо из титана, что позволяет менять положение протеза при имплантации.

Угол открытия створок — 78° (у St. Jude Medical — 85°), их закрытие происходит синхроннее и быстрее, что минимизирует объём регургитации. Мягкая пришивная манжета изготавливается из дакроновой ткани и прикрывает створки и входную часть корпуса протеза от нарастания паннуса, что позволяет уменьшить возможность развития параклапанной фистулы. Корпус и створки клапана рентгеноконтрастны. Первая клиническая имплантация протеза выполнена в 1987 году.

Существует несколько моделей клапанов Carbomedics, отличающихся формой и размерами пришивной манжеты.

Состав элементов двустворчатого протеза клапана сердца. Сверху вниз: створки / корпус / кольцо жёсткости / пришивная манжета.

Модель Carbomedics RSeries имеет уменьшенный посадочный диаметр пришивной манжеты без изменений внутреннего диаметра гидравлического отверстия, что позволяет имплантировать более крупные протезы в интрааннулярную позицию пациентам с узким фиброзным кольцом, что снижает необходимость в аннулопластике по расширению корня аорты.

Клапаны Carbomedics Pediatric / Small Adult отличаются ещё меньшими размерами пришивной манжеты: 16—19 мм для аортальной позиции и 16—21 мм для митральной. Внедрение этой модели началось с 1991 года и обусловлено тем, что стандартные клапаны часто не подходят для протезирования детей и лиц, имеющих маленький рост и узкие фиброзные кольца.

Толщина пришивной манжеты из полиэстера уменьшена настолько, что позволяет имплантировать 19-мм седло корпуса искусственного клапана сердца пациенту с 16-мм отверстием фиброзного кольца. Это обеспечивает повышение интенсивности тока крови и согласование гемодинамических требований с ростом пациента.

Модели Carbomedics OptiForm и Carbomedics Orbis Universal имеют податливые манжеты, что позволяет хирургу перемещать клапан, изменяя места вкола и выкола иглы. Это особенно актуально при повторном протезировании, когда у больного имеется жёсткое ригидноекальцинированное фиброзное кольцо. Второе положительное качество пришивной манжеты этого типа заключается в том, что она является симметричной относительно центральной плоскости корпуса, что позволяет хирургу менять уровень имплантации клапана.

Модель Carbomedics Top Hat предназначена для супрааннулярной имплантации[18]. Маленький размер и расположение позволяют хирургу использовать клапан, на один размер превосходящий аналог для интрааннулярной имплантации, что особенно важно для пациентов с узким корнем аорты. Благодаря своему свойству подходить к разным размерам фиброзного кольца, эта модель обеспечивает увеличение площади тока крови и снижает градиенты давления[19].

Примечания

  1. Schoen F. J. Pathology of heart valve substitution with mechanical and tissue prostheses // In: Silver M. D., Gotlieb A. L., Schoen F. J. editors. Cardiovascular pathology. — Philadelphia (PA): Churchill Livingstone. — 2001. — С. 629—677.
  2. Орловский, 2007, с. 40.
  3. Дземешкевич С. Л., Стивенсон Л. У. Болезни митрального клапана. Функция, диагностика, лечение. — М: Гэотар Медицина, 2000. — 287 с. — 2000 экз. — ISBN 978-5-9231-0029-7.
  4. 1234Малиновский Н. Н., Константинов Б. А., Дземешкевич С. Л. Биологические протезы клапанов сердца. — М: Медицина, 1988. — 256 с.
  5. Carpentier A., Lemaigre G., Robert L. et al. Biological factors affecting long-term results of valvular heterografts // J. Thorac. Cardiovasc. Surg. — 1969. — Vol. 58, № 4. — С. 467—483.
  6. Geha A. Evaluation of Newer Heart Valve Prostheses // In: Roberts A. G., Conti C. R.: Current Surgery of the Heart. — London. Lippincott Comp., 1987. — С. 79—87.
  7. Фурсов Б. А.Биопротезирование клапанов сердца: Автореф. дис. …д-ра мед. наук — М., 1982. 

Техника оперирования

Двустворчатые протезы благодаря своим конструктивным особенностям имеют ряд преимуществ перед поворотно-дисковыми моделями, обеспечивают стойкий гемодинамический эффект, механически надёжны и атромбогенны.

В настоящее время общепризнанным, традиционным доступом операции протезирования клапанов сердца является срединная стернотомия.
Доступ к аортальному клапану осуществляется посредством косопоперечной аортотомии на 8—10 мм выше устья правой венечной артерии, возможен аортотомный разрез выше комиссур с продолжением к середине некоронарного синуса.

Простой узловой шов без прокладок используется во всех ситуациях при достаточно выраженном фиброзе кольца, но без грубого кальциноза. Техника его выполнения проста: вкол иглы производится со стороны аорты через фиброзное кольцо с выколом в желудочек и затем снизу вверх через манжету протеза. При этом каждый предыдущий шов служит держалкой, подтягивание за которую улучшает экспозицию следующего шва.

Прерывистый 8-образный шов накладывается аналогичным образом с расстоянием между стежками 3—4 мм. Вывернутый (супрааннулярный) узловой матрасный шов с прокладкой накладывают прошиванием фиброзного кольца от аорты к желудочку и дальше в манжету протеза. Использование прокладок целесообразно при наличии тонких структур клапанного аппарата сердца у больных с ишемической болезнью сердца и с врожденными дисплазиями.

При кальцинозе, переходящем на фиброзное кольцо клапана, целесообразно укреплять швы прокладками из фторопласта-4. Швы могут быть комбинированными — часть на прокладках, часть без них. Данный метод способствует профилактике наползания окружающих тканей (паннуса), нарушающего работу запирающих элементов.

Невывернутый (субаннулярный) узловой матрасный шов с прокладкой, накладываемый со стороны желудочка к аорте, предпочтительно использовать при имплантации протезов в супрааннулярную позицию. Таким образом, прокладки швов могут располагаться либо на желудочковой, либо на аортальной сторонах фиброзного кольца.

Размещение прокладок на желудочковой стороне позволяет имплантировать протез большего размера, особенно при узком фиброзном кольце. Применяется также непрерывный обвивной шов. Эта модификация фиксации протеза позволяет значительно сократить внутрисердечный этап операции. Отсутствие узелков является своего рода профилактикой тромбообразования, шов удобен и эстетичен.

Появление современных низкопрофильных протезов расширило возможности хирургической коррекции пороков аортального клапана при узком фиброзном кольце. Протезирование аортального клапана малыми протезами (19—21 мм) рекомендовано больным с площадью поверхности тела 1,7 м² и менее; при этом должен учитываться возраст пациента, уровень предполагаемой физической активности после операции, а для предупреждения протезно-пациентного несоответствия — индекс площади эффективного отверстия протеза[81].

У пациентов с узким фиброзным кольцом аортального клапана и площадью поверхности тела более 1,7 м² используется методика расширения корня аорты с последующим протезированием аортального клапана диаметром более 21 мм. На выбор метода реконструкции фиброзного кольца оказывает размер фиброзного кольца и этиология порока.

При различных технологиях расширения корня аорты используют заплаты из ксеноперикарда, аутоперикарда и синтетических материалов. Выпуск протезов с супрааннулярной манжетой (с 1998 года Мединж, с 2007 года Карбоникс-1) позволил не прибегать к этим технологиям. При супрааннулярной технике имплантации протез фиксируется узловыми или П-образными швами, наложенными со стороны левого желудочка. Эта методика сохраняет геометрию аорты, позволяя увеличить диаметр минимум на 2 мм без увеличения объёма хирургического вмешательства[82].

Доступ к митральному клапану может быть осуществлён через левое или через правое предсердие и межпредсердную перегородку[83]. При многоклапанном протезировании с сохранением створок митрального клапана и реконструкцией подклапанных структур возможен расширенный чрездвухпредсердный доступ[83][84]. При одновременных операциях репротезирования митрального клапана и протезирования аортального клапана может быть использован трансаортальный доступ[85].

После вскрытия левого предсердия проводится его тщательная ревизия; обнаруженные тромботические массы удаляются. Стандартная методика включает в себя иссечение передней и задней створок митрального клапана, отступая от фиброзного кольца на 3—5 мм, отсечение хорд от папиллярных мышц на уровне перехода фиброзной ткани в мышечную.

Протез выбирают на один размер меньше диаметра фиброзного кольца, определяемого по калибру. Для предотвращения дисфункции запирающих элементов при большом размере фиброзного кольца и малом объёме левого желудочка при выборе размера протеза учитывают соответствие габаритов протеза размерам левого желудочка, определяемым перед операцией ультразвуковым методом, а также визуально во время операции.

Техника фиксации протеза при митральном протезировании в целом не отличается от техники аортального протезирования.

Полноту движения запирающего элемента проверяют сенсорным щупом. В случае неполной экскурсии запирающего элемента следует переориентировать каркас клапана относительно пришивной манжеты. Хирургическая техника должна гарантировать отсутствие нарушения запирающего элемента из-за его соприкосновения со швами, узлами, остатками папиллярных мышц и сухожильных хорд.

Ориентация двустворчатых протезов в антианатомическом положении створок обеспечивает лучшие гемодинамические показатели и снижение нарушения ритма сердца по сравнению с неоптимальной ориентацией. Однако на практике, если не удаётся выбрать оптимальную ориентацию клапана в силу анатомических особенностей, хирург вынужден имплантировать протез таким образом, чтобы обеспечить беспрепятственное движение запирающего элемента.

В настоящее время используют пришивные манжеты, предназначенные для имплантации клапана на различных уровнях фиброзного кольца.
При интрааннулярной имплантации, снижающей вероятность развития параклапанной фистулы, пришивная манжета располагается на уровне фиброзного кольца. Показанием для такой имплантации является расширенное и сохранённое фиброзное кольцо.

Митральный ПКС Карбоникс-1

При супрааннулярной имплантации, при сохранении створок и подклапанных структур, двухклапанном протезировании пришивная манжета располагается над фиброзным кольцом. Субаннулярная манжета располагается под фиброзным кольцом и применяется при массивном его кальцинозе или осложнённом бактериальном эндокардите.

Литература

  • Вербовая Т. А., Гриценко В. В., Глянцев С. П., Давыденко В. В., Белевитин А. Б., Свистов А. С., Евдокимов С. В., Никифоров В. С. Отечественные механические протезы клапанов сердца (прошлое и настоящее создания и клинического применения). — Спб: Наука, 2011. — 195 с. — 1000 экз. — ISBN 978-5-02-025450-3.
  • Орловский П. И., Гриценко В. В., Юхнев А. Д., Евдокимов С. В., Гавриленков В. И. Искусственные клапаны сердца. — Спб: ОЛМА Медиа Групп, 2007. — 448 с. — 1500 экз. — ISBN 978-5-373-00314-8.

Эта страница в последний раз была отредактирована 21 декабря 2018 в 23:58.

  • Вербовая Т. А., Гриценко В. В., Глянцев С. П., Давыденко В. В., Белевитин А. Б., Свистов А. С., Евдокимов С. В., Никифоров В. С. Отечественные механические протезы клапанов сердца (прошлое и настоящее создания и клинического применения). — Спб: Наука, 2011. — С. 128—149. — 195 с. — 1000 экз. — ISBN 978-5-02-025450-3.
  • Орловский П. И., Гриценко В. В., Юхнев А. Д., Евдокимов С. В., Гавриленков В. И. Искусственные клапаны сердца. — Спб: ОЛМА Медиа Групп, 2007. — С. 72—85, 98—104. — 448 с. — 1500 экз. — ISBN 978-5-373-00314-8.
  • Бокерия Л. А., Фадеев А. А., Махачев О. А., Мельников А. П., Бондаренко И. В. Механические протезы клапанов сердца. Справочное пособие. — М.: НЦССХ им. А. Н. Бакулева РАМН, 2012. — 141 с. — 500 экз. — ISBN 978-5-7982-0306-2.

Эта страница в последний раз была отредактирована 18 ноября 2018 в 18:09.

Достоинства и недостатки двустворчатых клапанов

Основным преимуществом, позволившим занять этим клапанам лидирующее положение, является самый низкий профиль (среди механических клапанов), наличие центрального кровотока через клапан, а также устранение «зоны малого отверстия», ответственной за тромбозы и дисфункции поворотно-дисковых конструкций. Общим со всеми механическими клапанами недостатком является необходимость в пожизненной антикоагулянтной терапии.

В то же время в случае заклинивания одной из створок не происходит мгновенного нарушения гемодинамики сердца. Гидродинамические свойства двустворчатых протезов бесспорно выше благодаря подготовленности створок к открытию за счёт их изначального наклонного положения. Тонкие створки вызывают меньший шум при работе.

Понравилась статья? Поделиться с друзьями:
Сердечные заболевания
Adblock
detector